GBCS Scheme

15F	15E(5EC	SEC:	SEC3	SEC3	15EC3	SEC3
į	(C	C:	C3	C3	C3	C3

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Point charges of 50 nano-coulomb each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -1, 0) in free space. Find the total force on the charge at A. (08 Marks)
 - b. Define electric field intensity and electric flux density.

(04 Marks)

c. A uniform line charge of infinite length with $\rho_L = 40$ nc/m lies along z axis. Find \bar{E} at (-2, 2, 8) in air. (04 Marks)

OR

- 2 a. Derive the expression for electric field intensity due to infinite line charge. (08 Marks)
 - b. Two particles having charges 2nano-coulomb and 5nano-coulomb are spaced 80 cm apart. Determine the electric field intensity at point "A" situated at a distance of 0.5 m from each of the two particles. Assume dielectric constant of 5. (08 Marks)

Module-2

- 3 a. Evaluate both sides of the divergence theorem for the field $\overrightarrow{D} = 2xy \, \hat{a} \, x + x^2 \, \hat{a} \, yc/m^2$ and the rectangular parallel piped formed by the planes x = 0 and 1, y = 0 and 2, and z = 0 and 3.
 - b. Derive the expression for equation of continuity. (08 Marks)
 - c. Give the vector density $J = 10\rho^2 z \, \hat{a} \, \rho 4\rho \cos^2 \phi \, \hat{a} \, \rho$ mA/m². Determine the total current flowing outward through the circular band. $\rho = 3$, $0 < \phi < 2\pi$, 2 < z < 2.8. (02 Marks)

OR

4 a. State and explain Gauss law in point form.

(05 Marks)

- b. Given the electric field $\vec{E} = 2x \, \hat{a}_x 4y \, \hat{a}_y$ v/m. Find the work done in moving a point charge +2C from (2, 0, 0,) to (0, 0, 0) and then form (0, 0, 0) to (0, 2, 0). (05 Marks)
- c. A potential field in free space is expressed as $V = \frac{60 \sin \theta}{r^2} v$. Find the electric flux density at the point (3, 60°, 25°) in spherical co-ordinates. (06 Marks)

Module-3

5 a. State and explain uniqueness theorem.

(08 Marks)

b. Determine the magnetic field intensity H at point P(0.4, 0.3, 0), if the 8A current in a conductor inward from infinity to origin on the x axis and outward to infinity along y axis.

OR

a. Find the potential and volume charge density at P(0.5, 1.5, 1)m in free space given the (08 Marks) potential field $V = 6\rho\phi Z$ volts.

b. Explain the concepts of scalar and vector magnetic potential.

(08 Marks)

Module-4

a. Derive an equation for the magnetic force between two differential current elements.

- b. Find the magnetization in a material where : i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) $\mu_r = 22$. There are 8.3×10^{28} atom/m³ and each atom has a dipole moment of 4.5×10^{-27} A/m^2 . iii) $B = 300 \ \mu T$ and $X_{on} = 15$.
- c. A conductor 4m long lies along the y axis with a current of 10A in the ay direction. Find the force on the conductor if the field in the region is $\overline{B} = 0.005 \overline{ax}$ Tesla.

- a. Find the expression for force on differential current element moving in a steady magnetic 8 field. Deduce the result to a straight conductor in a uniform magnetic field.
 - b. For region 1, $\mu_1 = 4\mu H/m$ and for region 2, $\mu_2 = 6\mu$ H/m. The regions are separated by z = 0plane. The surface current density at the boundary is $\overline{K} = 100\overline{ax}$ A/m. Find \overline{B}_2 if

$$\overline{B}_1 = 2 \hat{a} x - 3 \hat{a} y + \hat{a} z \text{ milites la for } z > 0.$$
 (08 Marks)

Module-5

a. For the given medium $\varepsilon = 4 \times 10^{-9}$ F/m and $\sigma = 0$. Find 'K' so that the following pair of fields satisfy Maxwell's equation:

$$\overline{E} = (20y - kt)\overline{ax} \quad v/m$$

$$\overline{H} = (y + 2 \times 10^6 \text{ t}) \overline{az} \text{ A/m}$$

(08 Marks)

A plane wave of 16 GHz frequency and E = 10 v/m propagates through the body of salt water having constants $\epsilon = 100$, $\mu_r = 1$ and $\sigma = 100$ S/m. Determine attenuation constant, phase shift, phase velocity and intrinsic impedance of the medium and depth of penetration. (08 Marks)

OR

10 a. State and explain Poynthing theorem.

(08 Marks)

- Find the amplitude of displacement current density in the free space within a large power distribution transformer where $\overline{H} = 10^6 \cos(377t + 1.2566 \times 10^{-6} z)$ A/m . (05 Marks)
- The depth of penetration in a conducting medium is 0.1m and the frequency of the electromagnetic wave is 1 MHz. Find the conductivity of the conducting medium. (03 Marks)